【佳学基因检测】基因选择:贝叶斯变量选择方法
肿瘤基因检测公司排名国内热点
与同行交流时医学博士年度肿瘤汇报知悉《Bioinformatics》在. 2003 Jan;19(1):90-7.发表了一篇题目为《基因选择:贝叶斯变量选择方法》肿瘤靶向药物治疗基因检测临床研究文章。该研究由Kyeong Eun Lee , Naijun Sha, Edward R Dougherty, Marina Vannucci, Bani K Mallick等完成。促进了肿瘤的精准治疗与个性化用药的发展,进一步强调了基因信息检测与分析的重要性。
肿瘤转移恶化的基因根源临床研究内容关键词:
基因选择,模式选择,基因表达,变量选择
肿瘤靶向治疗基因检测临床应用结果
通过表达模式选择重要基因是微阵列实验中的一个重要问题。由于样本量小和变量(基因)数量多,选择过程可能不稳定。本文提出了一种用于基因(变量)选择的分层贝叶斯模型。肿瘤基因解码课题组使用潜在变量将模型专门用于回归设置,并在执行变量选择之前使用贝叶斯混合。肿瘤发生的基因原因追溯组通过在模型的维度(重要基因的数量)上分配先验分布来控制模型的大小。参数的后验分布不是明确的形式,肿瘤基因检测需要结合使用截断采样和基于马尔可夫链蒙特卡罗 (MCMC) 的计算技术来模拟来自后验的参数。贝叶斯模型足够灵活,可以识别重要基因并进行未来预测。该方法通过 cDNA 微阵列应用于癌症分类,其中基因 BRCA1 和 BRCA2 与乳腺癌的遗传倾向相关,并且该方法用于鉴定一组重要基因。该方法也成功地应用于白血病数据。
肿瘤发生与复发转移国际数据库描述:
Selection of significant genes via expression patterns is an important problem in microarray experiments. Owing to small sample size and the large number of variables (genes), the selection process can be unstable. This paper proposes a hierarchical Bayesian model for gene (variable) selection. We employ latent variables to specialize the model to a regression setting and uses a Bayesian mixture prior to perform the variable selection. We control the size of the model by assigning a prior distribution over the dimension (number of significant genes) of the model. The posterior distributions of the parameters are not in explicit form and we need to use a combination of truncated sampling and Markov Chain Monte Carlo (MCMC) based computation techniques to simulate the parameters from the posteriors. The Bayesian model is flexible enough to identify significant genes as well as to perform future predictions. The method is applied to cancer classification via cDNA microarrays where the genes BRCA1 and BRCA2 are associated with a hereditary disposition to breast cancer, and the method is used to identify a set of significant genes. The method is also applied successfully to the leukemia data.
(责任编辑:佳学基因)